Exercise 5

Use residues to establish the following integration formula:

$$\int_0^{\pi} \frac{d\theta}{(a + \cos \theta)^2} = \frac{a\pi}{(\sqrt{a^2 - 1})^3} \quad (a > 1).$$

Solution

Before we get started with solving this integral, we want the limits of integration to be from 0 to 2π . Note that the integrand is even with respect to θ , so the integration interval can be extended to $[-\pi, \pi]$ so long as the integral is divided by 2. Then make the change of variables, $x = \theta + \pi$ and $dx = d\theta$ to achieve the desired limits.

$$\int_0^{\pi} \frac{d\theta}{(a + \cos \theta)^2} = \frac{1}{2} \int_{-\pi}^{\pi} \frac{d\theta}{(a + \cos \theta)^2}$$
$$= \frac{1}{2} \int_0^{2\pi} \frac{dx}{[a + \cos(x - \pi)]^2}$$
$$= \frac{1}{2} \int_0^{2\pi} \frac{dx}{(a - \cos x)^2}$$

Because the integral now goes from 0 to 2π and the integrand is in terms of $\cos x$, we can make the substitution, $z = e^{ix}$. Euler's formula states that $e^{ix} = \cos x + i \sin x$, so we can write $\cos x$ and dx in terms of z and dz, respectively.

$$\cos x = \frac{z + z^{-1}}{2}$$
 and $dx = \frac{dz}{iz}$.

The integral becomes

$$\frac{1}{2} \int_0^{2\pi} \frac{dx}{(a - \cos x)^2} = \int_C \frac{1}{2} \frac{1}{\left[a - \left(\frac{z + z^{-1}}{2}\right)\right]^2} \frac{dz}{iz}$$

$$= \int_C \frac{1}{2} \frac{4z^2}{(z^2 - 2az + 1)^2} \frac{dz}{iz}$$

$$= \int_C \frac{-2iz}{(z^2 - 2az + 1)^2} dz$$

$$= \int_C \frac{-2iz}{(z - z_1)^2 (z - z_2)^2} dz$$

$$= \int_C f(z) dz,$$

where the contour C is the positively oriented unit circle centered at the origin and z_1 and z_2 are the zeros of $z^2 - 2az + 1$.

Figure 1: This figure illustrates the unit circle in the complex plane, where z = x + iy.

According to Cauchy's residue theorem, this contour integral is $2\pi i$ times the sum of the residues of f(z) at the singular points inside the contour. That is,

$$\int_C f(z) dz = 2\pi i \sum_{k=1}^n \operatorname{Res}_{z=z_k} f(z).$$

f(z) has two singular points,

$$z_1 = a - \sqrt{a^2 - 1}$$
$$z_2 = a + \sqrt{a^2 - 1}.$$

Since a > 1, z_2 lies outside the unit circle and thus makes no contribution to the integral. However, z_1 does lie inside the circle, so we have to evaluate the residue of f(z) at this point. Because z_1 is a pole of order 2, the residue can be written as

Res_{z=z₁}
$$f(z) = \frac{\phi^{(2-1)}(z_1)}{(2-1)!} = \phi'(z_1),$$

where $\phi(z)$ is determined from f(z).

$$f(z) = \frac{\phi(z)}{(z - z_1)^2} \quad \to \quad \phi(z) = \frac{-2iz}{(z - z_2)^2}$$

So

Res_{$$z=z_1$$} $f(z) = \phi'(z_1) = -\frac{ai}{2(a^2-1)^{3/2}}$.

This means that

$$\int_C f(z) \, dz = 2\pi i \left(-\frac{ai}{2(\sqrt{a^2-1})^3} \right) = \frac{a\pi}{(\sqrt{a^2-1})^3}.$$

Therefore,

$$\int_0^\pi \frac{d\theta}{(a+\cos\theta)^2} = \frac{a\pi}{(\sqrt{a^2-1})^3} \quad (a>1).$$