Exercise 5

Use residues to establish the following integration formula:

$$
\int_{0}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}}=\frac{a \pi}{\left(\sqrt{a^{2}-1}\right)^{3}} \quad(a>1) .
$$

Solution

Before we get started with solving this integral, we want the limits of integration to be from 0 to 2π. Note that the integrand is even with respect to θ, so the integration interval can be extended to $[-\pi, \pi]$ so long as the integral is divided by 2 . Then make the change of variables, $x=\theta+\pi$ and $d x=d \theta$ to achieve the desired limits.

$$
\begin{aligned}
\int_{0}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}} & =\frac{1}{2} \int_{-\pi}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}} \\
& =\frac{1}{2} \int_{0}^{2 \pi} \frac{d x}{[a+\cos (x-\pi)]^{2}} \\
& =\frac{1}{2} \int_{0}^{2 \pi} \frac{d x}{(a-\cos x)^{2}}
\end{aligned}
$$

Because the integral now goes from 0 to 2π and the integrand is in terms of $\cos x$, we can make the substitution, $z=e^{i x}$. Euler's formula states that $e^{i x}=\cos x+i \sin x$, so we can write $\cos x$ and $d x$ in terms of z and $d z$, respectively.

$$
\cos x=\frac{z+z^{-1}}{2} \quad \text { and } \quad d x=\frac{d z}{i z} .
$$

The integral becomes

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{2 \pi} \frac{d x}{(a-\cos x)^{2}} & =\int_{C} \frac{1}{2} \frac{1}{\left[a-\left(\frac{z+z^{-1}}{2}\right)\right]^{2}} \frac{d z}{i z} \\
& =\int_{C} \frac{1}{2} \frac{4 z^{2}}{\left(z^{2}-2 a z+1\right)^{2}} \frac{d z}{i z} \\
& =\int_{C} \frac{-2 i z}{\left(z^{2}-2 a z+1\right)^{2}} d z \\
& =\int_{C} \frac{-2 i z}{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}} d z \\
& =\int_{C} f(z) d z,
\end{aligned}
$$

where the contour C is the positively oriented unit circle centered at the origin and z_{1} and z_{2} are the zeros of $z^{2}-2 a z+1$.

Figure 1: This figure illustrates the unit circle in the complex plane, where $z=x+i y$.

According to Cauchy's residue theorem, this contour integral is $2 \pi i$ times the sum of the residues of $f(z)$ at the singular points inside the contour. That is,

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

$f(z)$ has two singular points,

$$
\begin{aligned}
& z_{1}=a-\sqrt{a^{2}-1} \\
& z_{2}=a+\sqrt{a^{2}-1}
\end{aligned}
$$

Since $a>1, z_{2}$ lies outside the unit circle and thus makes no contribution to the integral.
However, z_{1} does lie inside the circle, so we have to evaluate the residue of $f(z)$ at this point. Because z_{1} is a pole of order 2 , the residue can be written as

$$
\operatorname{Res}_{z=z_{1}}^{\operatorname{Res}} f(z)=\frac{\phi^{(2-1)}\left(z_{1}\right)}{(2-1)!}=\phi^{\prime}\left(z_{1}\right),
$$

where $\phi(z)$ is determined from $f(z)$.

$$
f(z)=\frac{\phi(z)}{\left(z-z_{1}\right)^{2}} \quad \rightarrow \quad \phi(z)=\frac{-2 i z}{\left(z-z_{2}\right)^{2}}
$$

So

$$
\operatorname{Res}_{z=z_{1}} f(z)=\phi^{\prime}\left(z_{1}\right)=-\frac{a i}{2\left(a^{2}-1\right)^{3 / 2}}
$$

This means that

$$
\int_{C} f(z) d z=2 \pi i\left(-\frac{a i}{2\left(\sqrt{a^{2}-1}\right)^{3}}\right)=\frac{a \pi}{\left(\sqrt{a^{2}-1}\right)^{3}} .
$$

Therefore,

$$
\int_{0}^{\pi} \frac{d \theta}{(a+\cos \theta)^{2}}=\frac{a \pi}{\left(\sqrt{a^{2}-1}\right)^{3}} \quad(a>1) .
$$

